
Puppet System
Configuration Management

Thursday, October 3, 13

What is Puppet?

Configuration Management

State Maintenance

Policy Enforced Consistency and
Auditing

Open-Source Framework that
centrally manages IT Systems

Thursday, October 3, 13

How Puppet Works

Thursday, October 3, 13

Puppet’s Benefits

■ Centrally Manage Thousands of Systems
■ Ensure Systems are in a “Blessed” State
■ Eliminate Inconsistency Between Hosts
■ Security and Regulation Compliance
■ Less Time managing System Drift

Thursday, October 3, 13

What Puppet Does for “Us”
Assigns a Machine’s Desired Role

Maintains That Role
Thursday, October 3, 13

The Major Working Parts of Puppet

■ Puppet Server
- Resources

- Classes

- Manifests

- Modules

- Facter Facts

■ Puppet Client
- Facter

Thursday, October 3, 13

Puppet Server

■ Currently on puppet.example.com

■ Configuration found in /etc/puppet/puppet.conf

■ Main server lives in /etc/puppet

■ Modules are in /etc/puppet/modules

- Separated by function

- “environment” is the largest and most heavily used module

- dev in /etc/puppet/environments/development

- testing in /etc/puppet/environments/testing

- staging in /etc/puppet/environments/staging

■ Node lists/configurations in /etc/puppet/manifests

■ Starts automatically at boot time via /etc/init.d/puppetmaster

Thursday, October 3, 13

Puppet Client
■ Retrieves the client configuration from the puppetmaster and applies

it to the local host.

■ Currently Two test nodes

- puppet.example.com

- puppetclient.example.com

■ Configuration found in /etc/puppet/puppet.conf

- Runs manually in our implementation

- can be started via init/launchd script

- Can run out of Cron on a ‘less than frequent’ basis

Thursday, October 3, 13

Resources and Abstraction
Puppet’s Resource abstraction provides a consistent model for resources, across platforms. The
resource types (File, Package, etc.) are the interface to the underlying OS “provider” types.

Thursday, October 3, 13

Resource Declarations
Resources are the building blocks Puppet uses to model system configurations. Each resource
describes some aspect of a system such as a file, user, a service that must be running, or a package
that must be installed.

Resource Declarations:
	
 	
 	
 	
 file	
 {	
 '/etc/passwd':
	
 	
 	
 	
 	
 	
 ensure	
 =>	
 file,
	
 	
 	
 	
 	
 	
 owner	
 	
 =>	
 'root',
	
 	
 	
 	
 	
 	
 group	
 	
 =>	
 'root',
	
 	
 	
 	
 	
 	
 mode	
 	
 	
 =>	
 '0600',
	
 	
 	
 	
 }

	
 	
 	
 	
 user	
 {	
 “root”:
	
 	
 	
 	
 	
 	
 ensure	
 =>	
 present,
	
 	
 	
 	
 	
 	
 uid	
 	
 =>	
 0,
	
 	
 	
 	
 	
 	
 gid	
 	
 =>	
 0,
	
 	
 	
 	
 	
 	
 home	
 	
 	
 =>	
 “/root”
	
 	
 	
 	
 	
 	
 shell	
 =>	
 “/bin/bash”,
	
 	
 	
 	
 	
 	
 managehome	
 =>	
 true,
	
 	
 	
 	
 }

	
 	
 	
 	
 service	
 {	
 '”ntpd”:
	
 	
 	
 	
 	
 	
 ensure	
 =>	
 running,
	
 	
 	
 	
 	
 	
 hasstatus	
 	
 =>	
 true,
	
 	
 	
 	
 	
 	
 hasrestart	
 	
 =>	
 true,
	
 	
 	
 	
 	
 	
 enable	
 	
 	
 =>	
 true,
	
 	
 	
 	
 }

	
 	
 	
 	
 package	
 {	
 “iptables”:
	
 	
 	
 	
 	
 	
 ensure	
 =>	
 present,
	
 	
 	
 	
 }

Thursday, October 3, 13

Anatomy of a Resource Declaration
Puppet uses a “declarative language” as it’s configuration elements. The format and syntax are
simple to learn (and puppetlabs.com has an extensive reference).

	
 	
 file	
 {	
 '/etc/passwd':
	
 	
 	
 	
 	
 	
 ensure	
 =>	
 file,
	
 	
 	
 	
 	
 	
 owner	
 	
 =>	
 'root',
	
 	
 	
 	
 	
 	
 group	
 	
 =>	
 'root',
	
 	
 	
 	
 	
 	
 mode	
 	
 	
 =>	
 '0600',
	
 	
 	
 	
 }

<= Resource

} <= Attributes

Thursday, October 3, 13

File Attributes

backup
checksum
content
ctime
ensure
force
group
ignore
links
mode
mtime
owner
path
provider

purge
recurse
recurselimit
replace
selinux_ignore_defaults
selrange
selrole
seltype
seluser
source
sourceselect
target
type

Source: http://docs.puppetlabs.com/references/latest/type.html#file

Thursday, October 3, 13

Client-Side Abstraction

Thursday, October 3, 13

Classes, Manifests, and Modules

■ Modules are a collection of manifests all
related to a particular configuration

■ Manifests are the configuration elements
(consisting of classes) that utilize resources to
describe the managed node

■ Classes are individual code parts within
manifests, related to the configured node and
manage the varied resources on that node.

Let’s look at each of these...
Thursday, October 3, 13

Classes
Classes are named blocks of Puppet code which are not applied unless they are invoked by name. They can be stored in modules for
later use and then declared (added to a node’s catalog) with the include function or a resource-like syntax.

Classes, simply stated, are a collection of resource declarations organized in some reasonable way to facilitate ease of use, operation,
and interface. Here’s an example of one of our classes (slightly modified). Classes are usually contained in manifests, which exist in
modules.

class sudo {
 case $operatingsystem {
 OracleLinux: {
 package { sudo:
 ensure => present,
 }

 file { "/etc/sudoers":
 owner => "root",
 group => "root",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 require => Package["sudo"],
 }
 }

 Darwin: {
 file { "/var/gcs/sudo_provided_by_netboot":
 ensure => present,
 }

 file { "/etc/sudoers":
 owner => "root",
 group => "wheel",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 }
 }
 }
}

As you can see, the more you declare, the more unwieldy the class gets!
(will solve with modules later!)

Thursday, October 3, 13

Manifests
Puppet programs are called “manifests,” and they use the .pp file extension. They can live anywhere inside of Puppet,
they just need to be referenced to a node so that Puppet knows about them. The way Puppet “applies” a manifest to a
node is like so:

Manifests you write

Are compiled into a catalog inside of Puppet
(i.e., we don’t interact with it)

Applied to the Node

And ensures a consistent, cohesive configuration.

Thursday, October 3, 13

Which Node and Where?

■ Manifests and modules associated with nodes in
the nodes.pp file

■ Lives in /etc/puppet/manifests

■ This configuration has abstracted the individual
manifests into a “base” grouping and a “per
host” grouping.

■ This is only an example. We can separate by
pilot hosts vs “everything else”. Geography vs
Time Zone. Your options are completely flexible

How do we tell Puppet which node gets what configuration?class base {
 include cron
 include cups
 include dns
 include environment
 include ftp
 include groups
 include iptables
 include java
 include ldap
 include ntp
 include pam
 include postfix
 include puppet
 include snmp
 include sox
 include ssh
 include sudo
 include syslog
 include users
}

node 'puppet1.example.com' {
 include base
 include puppet::master
}

node 'puppet2.example.com' {
 include base
 include mysql
 include posapp
}

node 'puppet3.example.com' {
 include base
 include mysql
 include fooapp
}

/etc/puppet/manifests/nodes.pp

Thursday, October 3, 13

Modules

■ Are not language constructs
■ Are a convention for encapsulating

configurations
■ Necessary for autoloading of classes
■ Necessary for fileserving of templates and files
■ Simplify organization and maintenance

Thursday, October 3, 13

Non-Modularized Puppet Setups

■ All configurations for all resources in the same location

■ Becomes difficult to organize and differentiate between configuration
elements

■ Confuses the management and configuration of file serving

■ Confuses the management of templates and custom facts

■ Best for small environments with one OS and few facts/manifests

Thursday, October 3, 13

Modularized Puppet Configurations

■ Organize manifests by functional units
■ Compartmentalize custom facts and

templates with like elements
■ Enables Autoloading of classes
■ Allows us to abstract at best level of

granularity

Thursday, October 3, 13

“Out of the Box” Puppet Server Installations

• Lives in /etc/puppet
• Comes with Default Configurations
•All Manifests go in the “manifests” directory and
are manually loaded in the “nodes.pp” file

Thursday, October 3, 13

Modularized Configuration

•Moves manifests under their own area
•Keeps all module related configurations together
• Places all custom facts and templates with the modules they
support
•Supports autoloading of classes via the “init.pp” mechanism

Thursday, October 3, 13

Module Basics
•Live in /etc/puppet/modules
•Named according to function/feature

- Main Convention for Modules Directories
•Each module has files, lib, manifests, and templates directories

•files - “blessed” file versions that Puppet distributes to hosts
•lib - location for custom facter facts (ruby)
•manifests - primary manifest file location for Puppet
•templates - location for Template files

•All files owned by puppet:puppet on server
•Puppet automatically uses the “init.pp” mechanism for class loading

ignore “stdlib”...more on that later)

Thursday, October 3, 13

Manifest Basics
In the Manifests directory, the main manifest is “init.pp”. As we mentioned before, all configuration can
be declared there. However, it lends clarity to divide a manifest into it’s separate parts. Let’s take our
previous “sudo” example:

class sudo {
 case $operatingsystem {
 OracleLinux: {
 package { sudo:
 ensure => present,
 }

 file { "/etc/sudoers":
 owner => "root",
 group => "root",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 require => Package["sudo"],
 }
 }

 Darwin: {
 file { "/var/gcs/sudo_provided_by_netboot":
 ensure => present,
 }

 file { "/etc/sudoers":
 owner => "root",
 group => "wheel",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 }
 }
 }
}

class sudo {
 include sudo::config
 include sudo::install
}

class sudo::config {
 case $operatingsystem {
 OracleLinux: {
 file { "/etc/sudoers":
 owner => "root",
 group => "root",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 require => Package["sudo"],
 }
 }

 Darwin: {
 file { "/etc/sudoers":
 owner => "root",
 group => "wheel",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc_sudoers",
 }
 }
 }
}

init.pp

config.pp

Thursday, October 3, 13

Manifest Basics (cont.)

class sudo::install {
 case $operatingsystem {
 OracleLinux: {
 package { sudo:
 ensure => present,
 }
 }

 Darwin: {
 file { "/var/gcs/sudo_provided_by_netboot":
 ensure => present,
 }
 }
 }
}

install.pp

While not terribly confusing in a single file, it helps to
separate the loading from the configuration to the
installation. As a manifest, manifests, classes, or sub-
parts of modules expand, it’s easier to just go to the
relevant config. While less important for a small
module like sudo, big ones benefit greatly! :

Thursday, October 3, 13

Facter

[jsheets@puppet ~]$ facter -p
architecture => x86_64
augeasversion => 0.9.0
domain => example.com
facterversion => 1.6.6
fqdn => puppet.example.com
hardwareisa => x86_64
hardwaremodel => x86_64
hostname => puppet
id => jsheets
interfaces => eth0,lo
ipaddress => 1.2.3.4
ipaddress_eth0 => 1.2.3.4
ipaddress_lo => 127.0.0.1
is_virtual => true
kernel => Linux

- is an independent, cross-platform Ruby library designed to gather information on all the nodes you will be managing
with Puppet. It is available on all platforms that Puppet is available.

- is a lightweight program that gathers basic node information about the hardware and operating system. Facter is
especially useful for retrieving things like operating system names, hardware characteristics, IP addresses, MAC
addresses, and SSH keys.

[jsheets@puppet ~]$ facter -p ipaddress
1.2.3.4

[jsheets@puppet ~]$ facter -p operatingsystem
OracleLinux

pupeptclient:~ admin$ facter -p sp_cpu_type
Intel Core 2 Duo

Thursday, October 3, 13

Advantages of Facter
■ We can now write scripts to facter queries identically across platforms

■ This provides a uniform API for system information on a box (no more
crazy regex or chained awks)

■ If we have a custom piece of information we need, we can extend
facter to present that information in the same consistent way:

root@puppet:/root# facter -p router1
1.2.3.1

root@puppet:/root# facter -p router2
1.2.3.2

root@puppet:/root# facter -p custom1
fooapp

root@puppet:/root# facter -p custom2
dev

Thursday, October 3, 13

Custom Facts and Templates
Ex. from our “dns” module:
/etc/puppet/modules/dns/lib/facter/router.rb

Custom Fact that figures out the first Router Address from
another custom fact I wrote to get the network section of the
IP space.
#
Facter.add("router1") do
 setcode do
 %x{facter -p prefix |/usr/bin/awk -F "." '{print $1"."$2"."($3+1)"."4}'}.chomp
 end
end

and the template in /etc/puppet/modules/dns/templates/resolv-dyn.erb

This file managed by Puppet. DO NOT EDIT.
auto-generated via custom facts & a Ruby template
#
search example.com foo.example.com bar.example.com
domain example.com
nameserver <%= router1 %>
nameserver <%= router2 %>
nameserver 1.2.1.2

As you can see... A little bit of Ruby and templating, and we can accommodate any situation in
our environment.

Thursday, October 3, 13

Yeah, but what about Perl?

Thursday, October 3, 13

Use Cases
Provide a Perl program via “file” resource:

file { “/foo/bar/baz.pl”:
 ensure => present,
 owner => “foo”,
 group => “bar”,
 mode => 0755,
 source => “puppet://$puppetserver/modules/foo/baz.pl”,
}

And then run it via “exec” with a requirement of its existence:

exec { “runbaz”:
 command => “/foo/bar/baz.pl”,
 path => “/foo/bar”,
 creates => “/foo/bar/baz.report”,
 require => File[“/foo/bar/baz.pl”],
}

Thursday, October 3, 13

How about conditional Execution?
Within your Perl program:

my($foo) = `sudo /usr/bin/facter -p <value>`;
my(@foo) = `sudo /usr/bin/facter -p`;

...and then use the value from facter as a conditional, or execute different Perl scripts based on
some facter variable:

case $operatingsystem {
 CentOS: {
 exec { “foo”:...
 }
 }
 Solaris: {
 exec { “bar”:...
 }
 }

You can also grab ALL of facter’s output and pump that into a hash, a json or XML element, and
iterate over those values as you like.

Thursday, October 3, 13

How about a CPAN-ish way?

Sys::Facter can do the trick:
use Sys::Facter;
use Data::Dumper;

my $facter = new Sys::Facter(modules => [/foo/bar”]);

Grab some facts and print them:

$facter->load(“kernel”, “operatingsystem”, “ipaddress”);
print Dumper $facter->facts;

Or just print some facts directly
print $facter->kernel;
print $facter->operatingsystem;

Thursday, October 3, 13

How do I learn this thing?

■ Version 3 Reference

- http://docs.puppetlabs.com/puppet/3/reference/

- http://docs.puppetlabs.com/learning/

■ Puppet Function Reference

- http://docs.puppetlabs.com/references/latest/function.html

■ Puppet Type Reference

- http://docs.puppetlabs.com/references/latest/type.html

Thursday, October 3, 13

http://docs.puppetlabs.com/puppet/2.7/reference/
http://docs.puppetlabs.com/puppet/2.7/reference/
http://docs.puppetlabs.com/learning/
http://docs.puppetlabs.com/learning/
http://docs.puppetlabs.com/references/latest/function.html
http://docs.puppetlabs.com/references/latest/function.html
http://docs.puppetlabs.com/references/latest/type.html
http://docs.puppetlabs.com/references/latest/type.html

Help & Community
■ Books!

- “Pro Puppet”

- “Puppet Cookbook”

- “Pulling Strings With Puppet”

■ Mailing Lists!

- “Puppet Users”

- “Puppet Developers”

■ IRC

- http://webchat.freenode.net/?channels=puppet

- http://webchat.freenode.net/?channels=puppet-dev

Thursday, October 3, 13

http://www.amazon.com/Pro-Puppet-James-Turnbull/dp/1430230576/ref=sr_1_9?ie=UTF8&qid=1354121828&sr=8-9&keywords=puppet
http://www.amazon.com/Pro-Puppet-James-Turnbull/dp/1430230576/ref=sr_1_9?ie=UTF8&qid=1354121828&sr=8-9&keywords=puppet
http://www.amazon.com/Puppet-2-7-Cookbook-John-Arundel/dp/1849515387/ref=pd_bxgy_b_img_y
http://www.amazon.com/Puppet-2-7-Cookbook-John-Arundel/dp/1849515387/ref=pd_bxgy_b_img_y
http://www.amazon.com/Pulling-Strings-Puppet-Configuration-Management/dp/1590599780/ref=pd_bxgy_b_img_z
http://www.amazon.com/Pulling-Strings-Puppet-Configuration-Management/dp/1590599780/ref=pd_bxgy_b_img_z
https://groups.google.com/forum/?fromgroups%23!forum/puppet-users
https://groups.google.com/forum/?fromgroups%23!forum/puppet-users
https://groups.google.com/forum/?fromgroups%23!forum/puppet-dev
https://groups.google.com/forum/?fromgroups%23!forum/puppet-dev
http://webchat.freenode.net/?channels=puppet
http://webchat.freenode.net/?channels=puppet
http://webchat.freenode.net/?channels=puppet-dev
http://webchat.freenode.net/?channels=puppet-dev

Your Own Test Environment

■ The Puppet Virtual Machine
- http://info.puppetlabs.com/download-learning-puppet-VM.html

- VMX and OVF Format

- Made to be used with the Puppet Training materials:

- http://docs.puppetlabs.com/learning/

- Great with the slide deck I have from Puppet Training

Thursday, October 3, 13

http://info.puppetlabs.com/download-learning-puppet-VM.html
http://info.puppetlabs.com/download-learning-puppet-VM.html
http://docs.puppetlabs.com/learning/
http://docs.puppetlabs.com/learning/

